Oscillatory ROP GTPase Activation Leads the Oscillatory Polarized Growth of Pollen Tubes□D
نویسندگان
چکیده
Oscillation regulates a wide variety of processes ranging from chemotaxis in Dictyostelium through segmentation in vertebrate development to circadian rhythms. Most studies on the molecular mechanisms underlying oscillation have focused on processes requiring a rhythmic change in gene expression, which usually exhibit a periodicity of >10 min. Mechanisms that control oscillation with shorter periods (<10 min), presumably independent of gene expression changes, are poorly understood. Oscillatory pollen tube tip growth provides an excellent model to investigate such mechanisms. It is well established that ROP1, a Rho-like GTPase from plants, plays an essential role in polarized tip growth in pollen tubes. In this article, we demonstrate that tip-localized ROP1 GTPase activity oscillates in the same frequency with growth oscillation, and leads growth both spatially and temporally. Tip growth requires the coordinate action of two ROP1 downstream pathways that promote the accumulation of tip-localized Ca2 and actin microfilaments (F-actin), respectively. We show that the ROP1 activity oscillates in a similar phase with the apical F-actin but apparently ahead of tip-localized Ca2 . Furthermore, our observations support the hypothesis that the oscillation of tip-localized ROP activity and ROP-dependent tip growth in pollen tubes is modulated by the two temporally coordinated downstream pathways, an early F-actin assembly pathway and a delayed Ca2 gradient-forming pathway. To our knowledge, our report is the first to demonstrate the oscillation of Rho GTPase signaling, which may be a common mechanism underlying the oscillation of actin-dependent processes such as polar growth, cell movement, and chemotaxis.
منابع مشابه
Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes.
Oscillation regulates a wide variety of processes ranging from chemotaxis in Dictyostelium through segmentation in vertebrate development to circadian rhythms. Most studies on the molecular mechanisms underlying oscillation have focused on processes requiring a rhythmic change in gene expression, which usually exhibit a periodicity of >10 min. Mechanisms that control oscillation with shorter pe...
متن کاملPollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity.
Rapid tip growth allows for efficient development of highly elongated cells (e.g. neuronal axons, fungal hyphae and pollen tubes) and requires an elaborate spatiotemporal regulation of the growing region. Here, we use the pollen tube as a model to investigate the mechanism regulating the growing region. ROPs (Rho-related GTPases from plants) are essential for pollen tip growth and display oscil...
متن کاملControl of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx.
We have shown that Rop1At, a pollen-specific Rop GTPase that is a member of the Rho family of small GTP binding proteins, acts as a key molecular switch controlling tip growth in Arabidopsis pollen tubes. Pollen-specific expression of constitutively active rop1at mutants induced isotropic growth of pollen tubes. Overexpression of wild-type Arabidopsis Rop1At led to ectopic accumulation of Rop1A...
متن کاملROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin.
Pollen tubes expand by tip growth and extend directionally toward the ovule to deliver sperms during pollination. They provide an excellent model system for the study of cell polarity control and tip growth, because they grow into uniformly shaped cylindrical cells in culture. Mechanisms underlying tip growth are poorly understood in pollen tubes. It has been demonstrated that ROP1, a pollen-sp...
متن کاملLocalization of a Rho GTPase Implies a Role in Tip Growth and Movement of the Generative Cell in Pollen Tubes.
The Rho family GTPases function as key molecular switches, controlling a variety of actin-dependent cellular processes, such as the establishment of cell polarity, cell morphogenesis, and movement in diverse eukaryotic organisms. A novel subfamily of Rho GTPases, Rop, has been identified in plants. Protein gel blot and RNA gel blot hybridization analyses indicated that one of these plant Rho GT...
متن کامل